
UC����

SAND�������
Unlimited Release

Printed March �� ����

OPT��� An Object�Oriented Class Library for Nonlinear Optimization

J	 C	 Meza
Scienti
c Computing Department
Sandia National Laboratories

P	O	 Box ���� MS ����
Livermore� CA ����������

meza�ca	sandia	gov

ABSTRACT

Object�oriented programming is becoming a popular way of developing new software	
The promise of this new programming paradigm is that software developed through these
concepts will be more reliable and easier to re�use� thereby decreasing the time and cost of the
software development cycle	 This report describes the development of a C class library
for nonlinear optimization	 Using object�oriented techniques� this new library was designed
so that the interface is easy to use while being general enough so that new optimization
algorithms can be added easily to the existing framework	

���

Contents

� Introduction �

� Object�Oriented Programming �
�	� Abstraction �
�	� Classes �
�	� Inheritance �
�	� Polymorphism �

� Optimization Classes ��
�	� Nonlinear Problem Classes ��
�	� Optimization Method Classes ��

	 Example Code �	

 Summary ��

�

�� Introduction

Object�oriented programming �OOP� is becoming a popular way of developing new soft�
ware	 Unlike procedural programming� which emphasizes the development of algorithms
to accomplish a speci
c task� object�oriented programming relies on the implementation of
new data types called objects	 The promise behind this programming paradigm is that
software developed through these concepts will be more reliable and easier to re�use in new
applications� thereby decreasing the time and cost of the software development cycle	

The main concept behind object�oriented programming is called data abstraction� which
is the separation of the data and the procedures for manipulating that data from an applica�
tion program	 In many ways this is no di�erent than good programming practices that try to
keep the unnecessary details of a particular code from an end�user	 The major di�erence in
object�oriented programming is the ability to create user�de
ned data types and add them to
an existing language thereby facilitating data abstraction	 It is these new objects that give
object�oriented programming its name	 Through these new objects a computer language can
be easily extended to handle new applications	 A good example of this feature is the matrix
package developed by Davies �����	 With this package� a user can de
ne vectors and matrices
as part of the language as well as use the standard operations de
ned for these objects� such
as matrix addition� matrix multiplication� and inversion	

Another important trend is the renewed interest in nonlinear optimization	 Optimization
has always occupied a major role in industries� such as the airline industry� where scheduling
problems are important	 Recently� however� optimization has taken on an increasingly im�
portant role in areas such as advanced manufacturing where rapid design and prototyping of
new processes and devices is essential	 This trend is partly due to increased computer power
available to users that allows for the repeated computer simulation of manufacturing pro�
cesses and devices	 While in the past the design process involved a large amount of human
interaction� it is now becoming feasible to automate the design process using optimization
tools	 This trend in increased computer power has also had an e�ect within the optimization
community where there has been an increased interest in large�scale nonlinear optimization
problems ���	

Because of the wide variety of applications and the need to take advantage of any special
structure in a problem� many software packages have been developed to address various types
of optimization problems	 For an excellent overview of the available optimization software
see for example ���	 Unfortunately� the large number of optimization codes available makes
choosing a good algorithm for a particular problem di�cult	 This is especially true for the
novice practitioner of optimization	 In addition� even if the methods are inherently similar�
the interface to the codes can be quite di�erent making it di�cult to experiment with various
methods	 To resolve some of these issues code designers usually resort to one of two tricks�
�� force the user to use a particular calling sequence or �� the optimization codes are written
using reverse communication	 Neither solution is very satisfying for the reasons explained
below	

If the optimization algorithm requires a particular calling sequence the user is forced into

�

writing a subroutine that will interface between the optimizer and the function evaluator	
While this is usually a straightforward task it may prove to be unwieldy and costly in certain
situations	 In particular� we would like to focus on cases where the function evaluator is
described by the output of a simulation such as a
nite�element analysis	 In this case� the
prescribed interface may not be general enough to encompass all of the parameters required
to do a simulation or it may require the user to package any extra information in a pre�de
ned
packed format	

The second option that is frequently used is called reverse communication	 In this case�
the optimization algorithm returns to the calling routine whenever it needs information to
proceed	 This information may be a function value� a derivative� or any other data that is
required by the optimization algorithm	 From the point of view of the user this is a better
solution in that it requires less coding	 From the point of view of the software developer
however� the job is more di�cult	 Outside of the fact that this type of coding violates several
good programming practices �for example� single entry�single exit codes�� the code is also
more di�cult to debug	 Another disadvantage is that software using reverse communication
will be slightly more ine�cient due to the frequent calling of and returning from subroutines
that could involve several layers of subroutines	

The goal of this work is to use the ideas of object�oriented programming to overcome
these obstacles	 In particular we hope to address the following issues�

� better program interfaces for the user of optimization codes
� rapid evaluation of several optimization codes for a given problem
� rapid development of new optimization algorithms
� more re�usability of optimization codes

The rest of this paper is organized as follows	 In Section � we introduce some concepts
from object�oriented programming that will be useful for our discussion of the optimization
classes	 The reader who is familiar with object�oriented programming techniques can safely
skip this section	 Section � describes a C implementation of an object�oriented class
library for unconstrained optimization	 In Section � we give an example of using a particular
class for solving a simple test problem	 We conclude in Section � with a discussion of future
work	

�� Object�Oriented Programming

There are four main ideas that we will use from object�oriented programming�

� abstraction
� classes and objects
� inheritance
� polymorphism

This report does not seek to give a full description of object�oriented programming� but
merely to provide enough background material to discuss the new optimization classes	 For
a fuller description of object�oriented programming see ��� �� �� ���	

�

���� Abstraction

The idea of abstraction in software design is an old one	 In its most general form�
abstraction means the ability to isolate information pertaining to a particular software design	
In procedural programming for example� the idea of abstraction has led to the concept of
modular programming	 In object�oriented programming this idea is taken further through
the introduction of abstract data types	 For the purposes of this paper we will de
ne an
abstract data type as a user�de
ned extension to an existing language type	 It will usually
consist of a set of data structures and a collection of operations that can manipulate those
data structures	 Through the use of abstraction� code will hopefully be more robust since
details of data structures and the algorithms that manipulate them are isolated from the
user	

���� Classes

The next concept that is useful is that of a class	 A class is a user�de
ned data type
that allows for data hiding	 A class typically consists of both a data structure and a group
of subroutines that can manipulate these data structures	 The data inside the structure is
hidden from the user in that the only way to access it is through the subroutines de
ned
as part of the class	 In this manner� the user does not need to know about the particular
implementation of the class but can concentrate on the use of it	 An object is then just a
particular instance of a class	 The analogy in a procedural language is that of a variable
being a particular instance of a pre�de
ned type such as an integer	

An overworked but simple example is that of a complex data type	 In this example� we
could de
ne a class called complex that consists of a pair of existing language types� for
example� two oats	 A better example is that of a class calledVector that could be de
ned
as an array of oats together with an int that de
nes the size of the vector	 The di�erence
between the class Vector and an array which already exists in most languages is that we
can now de
ne operations that can be used with these objects	 Thus we could de
ne vector
addition using the standard �� operator between two Vectors of the same size	

���� Inheritance

Inheritance allows for easy extension of capabilities and is perhaps the most important
new concept after that of the class	 The idea behind inheritance is that a new class can
be de
ned using a previously de
ned class as a template	 In the terminology of OOP the
template is called the base class and the new class is derived from the base class by adding
new features to it	

One of the advantages of inheritance is that all of the algorithms de
ned as part of the
old class are still valid for the new class	 This results in more reusable code since it is not
necessary to rewrite this portion of the algorithm for the derived classes	

��	� Polymorphism

The last concept we will discuss is called polymorphism	 In C� it is possible to have a
pointer to a function that will perform di�erent actions depending on what class it belongs

�

to	 In this way� it is possible to defer an algorithmic design decision until it is required	 In
the OOP terminology� these functions are called virtual functions	 If a class contains virtual
functions then it is called an abstract class	 The reason for this distinction is that an abstract
class can never be used to create an object� it can only be used as a base class for other
derived classes	

�� Optimization Classes

There have been several attempts at designing optimization classes	 In ��� Schoenberg
developed a set of classes for the unconstrained optimization of arbitrary functions	 Schoen�
berg describes � classes that together choose a particular algorithm� set the tolerances� and
perform the actual optimization	 Nichols et al	 ��� have also developed optimization classes
for linear operators in the physical sciences and speci
cally for linear operators arising from
geophysical inversion problems	

We will take a slightly di�erent approach by making a distinction between nonlinear
problems and the methods used to solve these problems	 The rationale for this decision is
that users seldom are aware of the intricacies of the various methods nor should they need to
become experts in numerical analysis	 On the other extreme� the developer of optimization
algorithms usually does not care about the details of how a problem is de
ned other than to
know certain mathematical properties and some general problem characteristics	 By making
a distinction between problems and methods we can develop codes that will hopefully be
used by both groups without having to rewrite the class libraries every time a new problem
is presented or a new algorithm is developed	

We will write the general nonlinear optimization problem as follows�

min
x�Rn

f�x� ���

subject to hi�x� � �� i � �� � � � � p�

gi�x� � �� i � �� � � � �m�

In this problem� the objective function f�x� and the constraint functions hi�x� and gi�x�
are assumed to be general nonlinear functions	 In this report� we will limit our scope to
consider only the unconstrained optimization problem	 The question of whether classes
for unconstrained optimization problems should be subclasses of the general optimization
problem is rather tricky and we will delay the discussion of this issue until the last section	

The end�users of optimization algorithms are usually quite knowledgeable about the
problems they are trying to solve	 However� this information usually pertains to the physical
problem or to the algorithmic details of the computer model	 For instance� the user will
know the dimension of the problem� whether analytic
rst or second derivatives are available�
and a general idea about the cost of a function evaluation	 The developer of optimization
algorithms on the other hand� would usually like to know more about the mathematical
properties of the problem as well as any special structure that might be exploited	 For
example� a developer might ask any or all of the following questions�

� How smooth is the function� Is the function C�� C�� C�� etc	�

��

� Does the objective function have any special properties� for example� is it a linear
function� a quadratic function� etc	�

� Is this a large dimensional problem�
� Is there any other special structure to the problem� For example� is this a partially
separable problem�

� How many digits of accuracy does the objective function have� How many digits of
accuracy does the derivative function have�

� Is the Hessian matrix sparse or dense�
� Is the objective function expensive to compute�

To consider the
rst property only� available optimization algorithms could be classi
ed
according to the amount of smoothness assumed in the objective function	 For example� if
the function is C� �twice continuously di�erentiable�� then one could use a Newton method	
However� if the function is only continuous� then one would probably use a direct�search
method	 For most users it may be di�cult to prove how much continuity the objective
function has and therefore they may not be able to pick the most appropriate method	
What is more likely is that a user will use the
rst available optimization software or the
easiest one to use among several� usually with mixed results	

It seems appropriate then to de
ne nonlinear problems from the point of view of the user	
On the other hand� optimization method classes should be de
ned from the point of view of
the developer� as there is a great deal of similarity between various algorithms	 In the rest
of this section� we propose such a division and discuss a set of C classes for each one of
these two cases	

���� Nonlinear Problem Classes

One of the
rst questions that arises is the degree of continuity in the objective function	
This information may not be readily available� but what is clear is the availability of ana�
lytic derivatives	 As such we�ve chosen to classify nonlinear programming problems by the
availability of functions for computing the derivatives�

NLP� � No derivative information available
NLP� � Analytic
rst derivatives available
NLP� � Analytic
rst and second derivatives available

In Figure �� we present one implementation of a nonlinear problem class	 The
rst class
we de
ne is called NLP� for NonLinear ProblemC�	 This class contains information common
to all problems including� �� the problem dimension� �� a current point� �� a function value�
and �� a function to evaluate the objective function	

The class NLP� is derived from the base class NLP� by adding a member for the gradient
and a function to evaluate the gradient	 Likewise� the class NLP� is derived from NLP� by
adding the necessary information to compute and store the Hessian	 By using inheritance
we have been able to take advantage of the code that is already written at the lower levels	

��

NLP0

NLP1

NLP2

ColumnVector Grad
EvalG()

SymmetricMatrix Hessian
EvalH()

int dim
ColumnVector xc
void *Data
double fvalue
double EvalF()
virtual void Eval()

Figure �� Nonlinear problem classes

It is not intended that these base classes cover every nonlinear problem� but starting
with these classes the user can build new classes that contain the speci
c details of the real
problem	 Since the optimization method classes described below will use the base classes�
the optimization algorithms will still work with the new user classes without having to be
rewritten	

In our implementation of the optimization classes� we have de
ned the functions that
evaluate the objective function� gradient� and Hessian as virtual functions	 As we mentioned
in the previous section� this means that the NLPX classes �where X can stand for �� �� or
�� are abstract classes and can only be used as base classes for other classes	 This allows us
to defer the de
nition of how the function� gradient� and Hessian are actually computed so
that users can create their own de
nitions	 In essence� the base classes contain placeholders
for the codes that will be called to compute the objective function	

As part of our implementation we also provide � classes derived from NLPX called NLFX
that have a particular calling sequence to the required functions	 These classes can be used to
solve some simple optimization problems or can be used as templates for more sophisticated
objective functions	 In Section �� we will give some examples using the NLFX classes to
demonstrate some of the features of our class libraries	

���� Optimization Method Classes

There are many classi
cations possible for optimization algorithms� but most well�known
methods can be grouped into one of three classes�

��

Direct Newton-LikeCG-Like

PDS CG
Quasi-
NewtonLBFGS

OPTIMIZE

FD
Newton

Newton

Figure �� Optimization method hierarchy

� Direct Search methods
� Conjugate gradient like methods
� Newton like methods

For example� methods such as the Nelder�Mead simplex method� the box method� and the
parallel direct search method fall into the direct search class	 The nonlinear conjugate
gradient method and limited memory BFGS methods fall into the Conjugate Gradient class	
Finally the Newton class� could include methods such as
nite�di�erence Newton� quasi�
Newton methods� and inexact Newton methods	 A simple taxonomy for some popular
algorithms is given in Figure � as an example	

Based on this classi
cation� we have implemented C classes for � di�erent methods�
�� a Newton method� �� a
nite�di�erence Newton method� �� a Quasi�Newton method� and
�� a nonlinear conjugate gradient method	 In Figure �� we present the class hierarchy for
two of the implemented methods	 The base class� called Optimize consists of information
that is required by all optimization classes	 We note that once again we have used the
concept of polymorphism through the use of the virtual function optimize��	 This function
is intended to be a placeholder for the actual function that will do the optimization	 Since
each method class will have its own algorithm for computing the minimum of a function� it
is not necessary to de
ne it in the base class	 However� it is important to de
ne the interface
at this point since it is common to all of the derived classes	

The next next two classes OptQNewtonLike and OptCGLike are derived from the
Optimize class	 The major di�erence between these two classes is that the Newton�like

��

OptNewtonLike

 ColumnVector gprev
 SymmetricMatrix Hessian
 int grad_evals
 virtual void optimize()
 virtual void CheckConvg()

OptCGLike

 ColumnVector gprev
 int grad_evals
 virtual void optimize()
 virtual void CheckConvg()

Optimize

 int dim
 TOLS *tol
 double fprev, step_length
 int ret_code, iter_taken, fcn_evals
 virtual void optimize() = 0
 virtual void CheckConvg() = 0

OptCG

 NLP1 *nlp
 void optimize()
 int CheckConvg()

OptQNewton

 NLP1 *nlp
 void optimize()
 int CheckConvg()

Figure �� Optimization method classes

classes require extra storage for the Hessian matrix	 Finally� the last two classesOptQNew�
ton and OptCG constitute the actual optimization methods	 It is these two classes that
de
ne the optimization algorithms speci
c to each method	 In the case of the OptQNew�
ton class� the algorithm consists of a Quasi�Newton method with a BFGS update formula
for the Hessian	 The OptCG class implements a nonlinear conjugate gradient method	

As an example of the re�usability of object�oriented codes� all of the linear algebra is
handled through the use of the matrix package developed by Davies ���� with some minor
enhancements for the matrices that arise in the optimization algorithms	 In addition� all of
the optimization methods use the same line search� which is based on the algorithm by More
and Thuente ���	

�� Example Code

To illustrate some of the concepts� we now present an example that solves a small non�
linear optimization problem using the optimization classes	 The test problem consists of
Rosenbrock�s function�

min
x

����x� � x�
�
�� ��� x��

��

with an initial guess of ������ ����� In this example� we will assume that
rst derivatives are
available but that second derivatives are not available	 We will use a quasi�Newton method
that employs a BFGS update formula for the Hessian	

��

� �include �opt�h�
� void rosen�int mode� int n� ColumnVector x� double� fx� ColumnVector� g��
�
� main ��
� f
� int n � ��
� ColumnVector x�n�� g�n��
�
� USERFCN� tstf � �rosen� �� De�ne the test function
��
�� NLF� nlp�n�tstf�� �� De�ne the Nonlinear problem
��
�� x��� � ��	��
�� x��� � �	��
�� nlp	SetX�x��
�� nlp	Eval��� �� Evaluate the function at x
��
�� TOLS tol� �� Create a �Tolerances� object and
�� tol	SetDefaultTol��� �� set the tolerances
�� tol	SetFtol��	e����
�� tol	SetMaxIter������
��
�� OptQNewton objfcn��nlp��tol�� �� Build a Quasi�Newton object and optimize
��
�� objfcn	optimize���
��
�� nlp	PrintState��Solution from quasi�newton���
�� g

Figure �� Example code for solving Rosenbrock�s function

��

Figure � displays the source listing for the sample problem	 There are three major
sections in the example code� �� the problem de
nition� �� the tolerance de
nition� and ��
the method de
nition	 Since only
rst derivatives are available� we
rst create an object of
type NLF� on line ��	 The two components needed to specify this object are the dimension
of the problem and a pointer to a function	 The next step is to set the initial guess for this
problem	 Here we are using two of the member functions for NLF� to access the data in
the class and to evaluate the function at the current point	

The next step is to create a TOLS object on lines ����� that contains the tolerances
that will be used in the optimization method	 In fact� the optimization method object can
be created without a speci
c reference to a TOLS object but if the user wishes to change
any of the default tolerances it is necessary to create the TOLS object	

The last step consists of creating an optimization method object from theOptQNewton
class using the NLF� and TOLS objects	 We then call the member function optimize on
line �� to do the actual optimization	 Finally the solution is printed using the PrintState
member function	

We note that if the user would now like to try a di�erent optimization method� the
procedure would consist of replacing line �� with the creation of a di�erent type of object�
for example an OptCG object to try the nonlinear conjugate gradient method	

�� Summary

In this report� we have presented a C class library for nonlinear unconstrained opti�
mization	 We have proposed that a clear distinction be made between nonlinear problems
and optimization methods	 Based on this distinction� we have implemented a set of object�
oriented classes speci
cally suited to each case	 In this way� we have been able to develop a
set of classes that address the important issues for both the users and the developers of op�
timization algorithms	 From the point of view of a user requiring an optimization algorithm
to solve a particular problem� these libraries have been written so that they are easily used	
From the point of view of someone developing optimization algorithms� these classes have
been designed so that new algorithms can be easily incorporated into the existing framework	

We currently have four methods implemented� �� a Newton method� �� a
nite�di�erence
Newton method� �� a Quasi�Newton method� and �� a nonlinear conjugate gradient method	
Future work will concentrate on incorporating new algorithms	 In particular� we are cur�
rently working on developing new algorithms based on pattern search methods for the case
of noisy optimization	 We are also working on implementing new classes for large�scale op�
timization	 Since most of the popular methods for large�scale optimization use variations of
one of the methods already implemented� the extension to large�scale problems should be
straightforward	

Another area we will address concerns the case of constrained optimization problems	 The
question we wish to address is whether the constrained optimization case is a sub�class of the
unconstrained optimization case or is a constrained optimization problem an unconstrained
problem that happens to have constraints	 In the OOP terminology� this is the �is�a� versus
a �has�a� question� which has implications in the implementation of new classes	

��

Finally� we note that the libraries presented in this article should not be considered as
a
nished product	 The true test will be the usefulness of these class libraries for solving
real�world applications	 Towards this end� we are also developing a suite of test problems
from various manufacturing design problems using the nonlinear problem classes developed
here	

��

REFERENCES

��� Brett M� Averick and Jorge J� More� User guide for the MINPACK�� test problem collection� Technical
Report ANL�MCS�TM����	 Argonne National Laboratory	 �

��

��� Timothy Budd� An Introduction to Object�Oriented Programming� Addison�Wesley	 Reading	 MA	
�

��

��� David M� Butler� Fundamentals of object�oriented programming� Limit Point Systems	 Fremont CA	
�

��

��� R� B� Davies� NEWMAT�	 an experimental matrix package in C��� robertd�kauri�vuw�ac�nz	 �

��
��� Allen I� Holub� C� C�� Programming With Objects in C and C��� McGraw�Hill	 New York	 NY	

�

��
��� Jorge J� More and David J� Thuente� Line search algorithms with guaranteed su�cient decrease�

Technical Report MCS�P����
�	 Argonne National Laboratory	 �

��
��� Jorge J� More and Stephen J� Wright� Optimization Software Guide� SIAM Press	 Philadelphia	 PA	

�

��
��� Dave Nichols	 Geo� Dunbar	 and Jon Claerbout� The C�� language in physical science� In OON�

SKI ���	 pages ��
����	 April �

�� Proceedings of the First Annual Object�Oriented Numerics
Conference�

�
� Ronald Schoenberg� An object�oriented design of an optimization module� In OON�SKI ���	 pages
������
	 April �

�� Proceedings of the First Annual Object�Oriented Numerics Conference�

��� B� Stroustrup� The C�� Programming Language� Addison�Wesley	 Reading	 Massachusetts	 �
���

��

